The “official” history of connexive logic was written in 2012 by Storrs McCall who argued that connexive logic was founded by ancient logicians like Aristotle, Chrysippus, and Boethius; that it was further developed by medieval logicians like Abelard, Kilwardby, and Paul of Venice; and that it was rediscovered in the 19th and twentieth century by Lewis Carroll, Hugh MacColl, Frank P. Ramsey, and Everett J. Nelson. From 1960 onwards, connexive logic was finally transformed into non-classical calculi which partly concur with systems of relevance logic and paraconsistent logic. In this paper it will be argued that McCall’s historical analysis is fundamentally mistaken since it doesn’t take into account two versions of connexivism. While “humble” connexivism maintains that connexive properties (like the condition that no proposition implies its own negation) only apply to “normal” (e.g., self-consistent) antecedents, “hardcore” connexivism insists that they also hold for “abnormal” propositions. It is shown that the overwhelming majority of the forerunners of connexive logic were only “humble” connexivists. Their ideas concerning (“humbly”) connexive implication don’t give rise, however, to anything like a non-classical logic.