Strigolactones (SLs) are hormonal signals that regulate multiple aspects of shoot architecture, including shoot branching. Like many plant hormonal signaling systems, SLs act by promoting ubiquitination of target proteins and their subsequent proteasome-mediated degradation. Recently, SMXL6, SMXL7, and SMXL8, members of the SMAX1-LIKE (SMXL) family of chaperonin-like proteins, have been identified as proteolytic targets of SL signaling in Arabidopsis thaliana. However, the mechanisms by which these proteins regulate downstream events remain largely unclear. Here, we show that SMXL7 functions in the nucleus, as does the SL receptor, DWARF14 (D14). We show that nucleus-localized D14 can physically interact with both SMXL7 and the MAX2 F-box protein in a SL-dependent manner and that disruption of specific conserved domains in SMXL7 affects its localization, SL-induced degradation, and activity. By expressing and overexpressing these SMXL7 protein variants, we show that shoot tissues are broadly sensitive to SMXL7 activity, but degradation normally buffers the effect of increasing SMXL7 expression. SMXL7 contains a well-conserved EAR (ETHYLENE-RESPONSE FACTOR Amphiphilic Repression) motif, which contributes to, but is not essential for, SMXL7 functionality. Intriguingly, different developmental processes show differential sensitivity to the loss of the EAR motif, raising the possibility that there may be several distinct mechanisms at play downstream of SMXL7.
INTRODUCTIONShoot system architectural characteristics strongly influence the productivity of many crop species, and architectural traits have been selected in both historical and contemporary breeding schemes. Understanding the mechanisms that regulate shoot architecture, and its environmental responsiveness, is therefore an important goal for plant research. It is well established that long-distance hormonal signals, including auxin, cytokinin, and strigolactone (SL), are key regulators of shoot architecture and allow communication both within the shoot system and between the shoot and root . For instance, cytokinin produced in the root system in response to the availability of nitrate ions is systemically transported to the shoot, where it promotes branching (Kiba et al., 2011; MĂŒller et al., 2015). Similarly, root-derived SL plays a key role in negatively regulating branching in response to low phosphate availability in the rhizosphere (Kohlen et al., 2011). However, our understanding of the molecular mechanisms that act downstream of these hormones to alter developmental processes in the shoot is currently limited. This is particularly true of SLs. Analysis of the phenotypes of SL biosynthesis and signaling mutants has revealed roles for SLs in the regulation of shoot branching, branching angle, plant height, stem thickness, and leaf blade elongation . The role of SLs in regulating shoot branching has been intensively studied, resulting in two contrasting, nonexclusive models for their mode of action. In the first, SLs are proposed to act locally in axill...