Nasopharyngeal carcinoma (NPC) is one of the malignant epithelial tumors with a high metastasis rate. This study aimed to screen potential novel biomarkers involved in NPC metastasis. Microarray data of locoregionally advanced NPC (LA-NPC; GSE103611) were obtained from the database of Gene Expression Omnibus. The differentially expressed genes (DEGs) between LA-NPC tissues with and without distant metastasis after radical treatment were screened. Functional analysis was performed and the protein–protein interaction and submodule were analyzed. The univariate Cox regression analysis was performed to identify prognostic genes in NPC in the validation microarray dataset GSE102349. The drug–gene interactions and key genes were identified. Totally, 107 DEGs were identified. The upregulated DEGs and the key nodes in the protein–protein interaction network were associated with pathways or biological processes related to the cell cycle. Four genes including CD44, B2M, PTPN11, and TRIM74 were associated with disease-free survival in NPC. The drug–gene interaction analysis revealed that upregulated genes CXCL10, CD44, B2M, XRCC5, and RPL11 might be potential druggable genes for patients with LA-NPC metastasis by regulating cell cycle, autophagy, and drug resistance. Upregulated CXCL10, CD44, B2M, XRCC5, and RPL11 might play important roles in LA-NPC metastasis by regulating cell cycle-related pathways.