Abstract. There is mounting evidence that garlic extracts possess significant anticancer actions. However, no studies have been reported on the effects of aged black garlic extracts (ABGE) on gastric cancer in vitro or in vivo. To examine the potential action of ABGE against gastric cancer, the present study evaluated its effect on the inhibition of cell proliferation and induction of apoptosis in SGC-7901 human gastric cancer cells. Additionally, we performed an in vivo study by inoculating the murine foregastric carcinoma cell line in Kunming mice and treating them with various doses of ABGE (0, 200, 400 and 800 mg/kg, intraperitoneally) for 2 weeks. Dosedependent apoptosis was detected in ABGE-treated cells in in vitro studies. In tumor-bearing mice, significant antitumor effects of ABGE were observed, such as growth inhibition of inoculated tumors. Further investigation of serum superoxide dismutases, glutathione peroxidase, interleukin-2 and the increased indices of spleen and thymus indicated that the anticancer action of ABGE may be partly due to its antioxidant and immuno modulative effects.
Matrine is an alkaloid isolated from Sophora flavescens. The present study aimed to determine whether matrine effectively inhibits the proliferation of breast cancer cells, and the underlying mechanism(s) of its antitumor function. The effects of matrine on the cell viability of ER-positive MCF7 cells, HER2-positive BT-474 cells and highly metastatic MDA-MB-231 cells were measured using MTT and apoptosis assays. Western blot analysis was performed to investigate the expression levels of the inhibitor of κB (IκB) kinase β (IKKβ) in cells treated with or without matrine. It was observed that the matrine treatment resulted in the death of the three types of cancer cells, but significantly less toxicity was observed in the control cancer cells. The experimental results also suggested that the antitumor effects of matrine on breast cancer cells may be associated with the downregulation of IKKβ expression by matrine, as indicated by the western blot analysis results. The present results suggested that matrine may be used as an effective drug candidate for treating breast cancers in the future, following further research.
Triptolide is a diterpene triepoxide compound extracted from the medicinal plant, Tripterygium wilfordii Hook F. The aim of the present study was to determine whether triptolide inhibits the proliferation of breast cancer cells and to further investigate the associated molecular mechanisms. The effects of triptolide on the cell viability of three breast cancer cell lines, specifically, highly metastatic MDA-MB-231, human epidermal growth factor receptor 2-positive BT-474 and estrogen receptor-positive MCF7 cells, were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis assays. Western blot analysis was performed to investigate the expression levels of β-catenin in the control and triptolide-treated cells. The results demonstrated that triptolide treatment caused cell death in the three types of malignant cell lines. Treatment with 25 nM triptolide for 48 h exhibited marked inhibitory effects on the cell viability of the three types of cells, with greater effects observed in BT-474 cells compared with the other two cell types. When compared with the cells not treated with triptolide, 50 nM triptolide treatment resulted in apoptosis of MDA-MB-231, BT-474 and MCF7 cells with apoptotic rates of ~80%. Western blot analysis indicated that triptolide treatment of MDA-MB-231, BT-474 and MCF7 cells decreased the expression levels of β-catenin to 5–10% of the levels observed in the cells treated with dimethyl sulfoxide only. Therefore, the results of the present study indicate that triptolide induces the apoptosis of breast cancer cells via a mechanism associated with the Wnt/β-catenin signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.