2019
DOI: 10.1039/c9cp00508k
|View full text |Cite
|
Sign up to set email alerts
|

Strong anisotropic nodal lines in the TiBe family

Abstract: Using first-principles calculations and k·p model analysis, we find that Dirac nodal lines (DNLs) exist in low energy band structures of real materials of the body-centered cubic TiBe family.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
4
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 45 publications
0
4
0
Order By: Relevance
“…because they can host considerably rich fermionic states as well as other interesting physical properties [23][24][25]. TMs can be roughly classified into the following types: (i) topological nodal point (TNP) type [26][27][28][29]39]; (ii) topological nodal line (TNL) type [30][31][32][33][34][35][36][37][38][39]; (iii) topological nodal surface (TNS) type semimetals [40][41][42][43]. The TNP, TNL, and TNS type semimetals host 0D, 1D, and 2D topological elements (TEs), respectively, because these band crossing points (BCPs) can form a point, a line, or a surface in momentum space.…”
Section: Introductionmentioning
confidence: 99%
“…because they can host considerably rich fermionic states as well as other interesting physical properties [23][24][25]. TMs can be roughly classified into the following types: (i) topological nodal point (TNP) type [26][27][28][29]39]; (ii) topological nodal line (TNL) type [30][31][32][33][34][35][36][37][38][39]; (iii) topological nodal surface (TNS) type semimetals [40][41][42][43]. The TNP, TNL, and TNS type semimetals host 0D, 1D, and 2D topological elements (TEs), respectively, because these band crossing points (BCPs) can form a point, a line, or a surface in momentum space.…”
Section: Introductionmentioning
confidence: 99%
“…After the discovery of topological insulators (Zhang et al, 2009 ; Hasan and Kane, 2010 ; Yu et al, 2010 ; Qi and Zhang, 2011 ; Rechtsman et al, 2013 ), topological semimetals (Jiang et al, 2015 ; Fang et al, 2016 ; Chang et al, 2017 ; Yan and Felser, 2017 ; Gao et al, 2019 ) with topological band inversion and exotic topological boundary states have attracted widespread attention. To date, many types of topological semimetals have been proposed, including topological nodal point semimetals (Liu et al, 2013 , 2019 ; Li et al, 2014 ; Xu et al, 2014 , 2016 , 2020 ; Dvorak and Wu, 2015 ; Cheng et al, 2017 ; Zhong et al, 2017 ; Gao et al, 2019 ; Zhang et al, 2019 ), topological nodal line semimetals (Cai et al, 2018 ; Chen et al, 2018 ; Gao et al, 2018 ; Zhou et al, 2018 ; He et al, 2019 ; Jin et al, 2019a ; Pham et al, 2019 ; Yi et al, 2019 ; Zou et al, 2019 ; Zhao et al, 2020 ), and topological nodal surface semimetals (Qie et al, 2019 ; Yang and Zhang, 2020 ).…”
Section: Introductionmentioning
confidence: 99%
“…Topological nodal point semimetals (Hosur et al, 2012 ; Zyuzin and Burkov, 2012 ; Hosur and Qi, 2013 ; Vazifeh and Franz, 2013 ; Liu et al, 2014 ; Lundgren et al, 2014 ; Kobayashi and Sato, 2015 ; Miransky and Shovkovy, 2015 ; Xu et al, 2015a ; Young and Kane, 2015 ) enjoy 0-D nodal points in momentum space. Topological nodal line semimetals (Cai et al, 2018 ; Chen et al, 2018 ; Gao et al, 2018 ; Zhou et al, 2018 ; He et al, 2019 ; Jin et al, 2019a ; Pham et al, 2019 ; Yi et al, 2019 ; Zou et al, 2019 ; Zhao et al, 2020 ) host 1-D topological nodal lines in momentum space via band crossing along a line in momentum space. Topological nodal surface semimetals (Wu et al, 2018 ; Zhang et al, 2018 ; Fu et al, 2019a ; Qie et al, 2019 ; Yang et al, 2020 ) host 2-D nodal surface states that are composed of continuous band crossing points.…”
Section: Introductionmentioning
confidence: 99%