The electronic and magnetic properties of single 3d transition-metal(TM) atom (V, Cr, Mn, Fe, Co, and Ni) adsorbed graphdiyne (GDY) and graphyne (GY) are systematically studied using first-principles calculations within the density functional framework. We find that the adsorption of TM atom not only efficiently modulates the electronic structures of GDY/GY system, but also introduces excellent magnetic properties, such as half-metal and spin-select half-semiconductor. Such modulation originates from the charge transfer between TM adatom and the GDY/GY sheet as well as the electron redistribution of the TM intra-atomic s, p, and d orbitals. Our results indicate that the TM adsorbed GDY/GY are excellent candidates for spintronics.
In electrochemical devices, such as batteries, traditional electric double layer (EDL) theory holds that cations in the cathode/electrolyte interface will be repelled during charging, leaving a large amount of free solvents. This promotes the continuous anodic decomposition of the electrolyte, leading to a limited operation voltage and cycle life of the devices. In this work, we design a new EDL structure with adaptive and passivating properties. It is enabled by adding functional anionic additives in the electrolyte, which can selectively bind with cations and free solvents, forming unique cation-rich and branch-chain like supramolecular polymer structures with high electrochemical stability in the EDL inner layer. Due to this design, the anodic decomposition of ether-based electrolytes is significantly suppressed in the high voltage cathodes and the battery shows outstanding performances such as super-fast charging/discharging and ultra-low temperature applications, which is extremely hard in conventional electrolyte design principle. This unconventional EDL structure breaks the inherent perception of the classical EDL rearrangement mechanism and greatly improve electrochemical performances of the device.
Density functional theory (DFT) and Berry curvature calculations show that quantum anomalous Hall effect (QAHE) can be realized in two-dimensional(2D) antiferromagnetic (AFM) NiRuCl. The results indicate that NiRuCl behaves as an AFM Chern insulator and its spin-polarized electronic structure and strong spin-orbit coupling (SOC) are responsible for the QAHE. By tuning SOC, we found that the topological property of NiRuCl arises from its energy band inversion. Considering the compatibility between the AFM and insulators, AFM Chern insulator provides a new way to archive high temperature QAHE in experiments due to its different magnetic coupling mechanism from that of ferromagnetic (FM) Chern insulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.