The electronic and magnetic properties of single 3d transition-metal(TM) atom (V, Cr, Mn, Fe, Co, and Ni) adsorbed graphdiyne (GDY) and graphyne (GY) are systematically studied using first-principles calculations within the density functional framework. We find that the adsorption of TM atom not only efficiently modulates the electronic structures of GDY/GY system, but also introduces excellent magnetic properties, such as half-metal and spin-select half-semiconductor. Such modulation originates from the charge transfer between TM adatom and the GDY/GY sheet as well as the electron redistribution of the TM intra-atomic s, p, and d orbitals. Our results indicate that the TM adsorbed GDY/GY are excellent candidates for spintronics.
A Skyrmion crystal typically arises from helical spin structures induced by the Dzyaloshinskii-Moriya interaction. Experimentally its physical exploration has been impeded because it is a rarity and is found only within a narrow temperature and magnetic field range. We present a method for the assembly of a two-dimensional Skyrmion crystal based upon a combination of a perpendicularly magnetized film and nanopatterned arrays of magnetic vortices that are geometrically confined within nanodisks. The practical feasibility of the method is validated by micromagnetic simulations and computed Skyrmion number per unit cell. We also quantify a wide range in temperature and field strength over which the Skyrmion crystal can be stabilized without the need for any intrinsic Dzyaloshinskii-Moriya interactions, which otherwise is needed to underpin the arrangement as is the case in the very few known Skyrmion crystal cases. Thus, our suggested scheme involves a qualitative breakthrough that comes with a substantial quantitative advance.
Organic-inorganic hybrid lead halide perovskites have been widely investigated in optoelectronics both experimentally and theoretically. The present work incorporates chemically modified graphene into nanocrystal SnO as the electron transporting layer (ETL) for highly efficient planar perovskite solar cells. The modification of SnO with highly conductive two-dimensional naphthalene diimide-graphene can increase surface hydrophobicity and form van der Waals interaction between the surfactant and the organic-inorganic hybrid lead halide perovskite compounds. As a result, highly efficient perovskite solar cells with power conversion efficiency of 20.2% can be achieved with an improved fill factor of 82%, which could be mainly attributed to the augmented charge extraction and transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.