2018
DOI: 10.1090/jag/706
|View full text |Cite
|
Sign up to set email alerts
|

Strong approximation over function fields

Abstract: By studying A 1 -curves on varieties, we propose a geometric approach to strong approximation problem over function fields of complex curves. We prove that strong approximation holds for smooth, low degree affine complete intersections with the boundary smooth at infinity.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
3

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(7 citation statements)
references
References 27 publications
0
4
0
3
Order By: Relevance
“…The result for conics strengthens some key results in [dJS06] which is used to prove the (strongly) rational simple connectedness of low degree complete intersections, see [dJS06, Theorem 1.2] for details. The result for conics also leads a proof of strong approximation 5 for low degree affine complete intersections over function fields by Q. Chen and Y. Zhu, see [CZ15]. Therefore, we expect that there will be more applications of our main theorem in arithmetic (eg.…”
Section: Introductionmentioning
confidence: 76%
“…The result for conics strengthens some key results in [dJS06] which is used to prove the (strongly) rational simple connectedness of low degree complete intersections, see [dJS06, Theorem 1.2] for details. The result for conics also leads a proof of strong approximation 5 for low degree affine complete intersections over function fields by Q. Chen and Y. Zhu, see [CZ15]. Therefore, we expect that there will be more applications of our main theorem in arithmetic (eg.…”
Section: Introductionmentioning
confidence: 76%
“…Remark 6.6. Proposition 6.5 could be proved alternatively by a test curve computation (see [CZ15,Lemma 4.12]).…”
Section: An Integral Cycle Relationmentioning
confidence: 99%
“…. , x n ) = c, avec c = 0 et f homogène de degré d non singulière, (approximation forte établie dans [1] pour d 2 ≤ n + 1) à l'approximation forte pour les ouverts de P n K d'équation f (x 0 , . .…”
Section: L'approximation Forte Pour Les Groupes Semi-simples Et Leurs...unclassified
“…Depuis une dizaine d'années, les techniques de déformation de courbes en géométrie algébrique complexe sont appliquées à l'étude de ces questions pour les variétés rationnellement connexes définies sur un corps K = C(Γ) de fonctions d'une variable sur les complexes, situation a priori plus simple que celle des variétés sur les corps de nombres. Dans l'article récent [1], Chen et Zhu établissent l'approximation forte sur K pour le complémentaire d'hypersurfaces lisses dans les intersections complètes lisses dans un espace projectif, sous certaines conditions sur les multidegrés.…”
Section: Introductionunclassified