<p style='text-indent:20px;'>In this paper, we investigate the global well-posedness and the existence of strong global and exponential attractors for a nonlinear strongly damped hyperbolic equation in <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset{\mathbb R}^N $\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_{tt}+\Delta ^2u+\Delta ^2u_t+\Delta \phi (\Delta u) = g(x), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the hinged boundary condition. We show that (i) when the nonlinearity <inline-formula><tex-math id="M2">\begin{document}$ \phi $\end{document}</tex-math></inline-formula> is quasi-monotone and is of at most the critical growth: <inline-formula><tex-math id="M3">\begin{document}$ 1\leq p\leq p^{*}: = \frac{N+2}{(N-2)^{+}} \ (N\geq 2) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ g = 0 $\end{document}</tex-math></inline-formula>, the model has in phase space <inline-formula><tex-math id="M5">\begin{document}$ {\mathcal H} = V_3\times L^2 $\end{document}</tex-math></inline-formula> a trivial global and exponential attractor, respectively. (ii) In particular when <inline-formula><tex-math id="M6">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula>, without any polynomial growth restriction for <inline-formula><tex-math id="M7">\begin{document}$ \phi $\end{document}</tex-math></inline-formula>, the model has a strong global and a strong exponential attractor, respectively. These results deepen and extend the related researches on this topic in recent literature [<xref ref-type="bibr" rid="b16">16</xref>,<xref ref-type="bibr" rid="b22">22</xref>]. The method developed here allows us to establish the existence of the strong global and exponential attractor for this nonlinear model.</p>