The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.
A self-made microplasma jet array device is used to treat deoxyadenosine (dA) and adenosine (Ado) solutions to avoid the effect of air on genetic materials. Results show that Ado is easily converted into dA through deoxidation reaction. In addition, dA solution is treated with different microplasma arrays (i.e., atmospheric-pressure Ar, N 2 , air, and O 2 ) for comparative analysis. The dA molecule is relatively stable within the Ar plasma for 3 min treatment time. This molecule can be modified into different structures with N 2 , air, and O 2 microplasma arrays. The results obtained in this study provide references for the application of plasma in biology and the effect of oxygen-containing free radicals in biological plasma.
<p style='text-indent:20px;'>This paper investigates the existence of <i>strong</i> global and exponential attractors and their robustness on the perturbed parameter for an extensible beam equation with nonlocal energy damping in <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset{\mathbb R}^N $\end{document}</tex-math></inline-formula>: <inline-formula><tex-math id="M2">\begin{document}$ u_{tt}+\Delta^2 u-\kappa\phi(\|\nabla u\|^2)\Delta u-M(\|\Delta u\|^2+\|u_t\|^2)\Delta u_t+f(u) = h $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \kappa \in \Lambda $\end{document}</tex-math></inline-formula> (index set) is an extensibility parameter, and where the "<i>strong</i>" means that the compactness, the attractiveness and the finiteness of the fractal dimension of the attractors are all in the topology of the stronger space <inline-formula><tex-math id="M4">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> where the attractors lie in. Under the assumptions that either the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is of optimal subcritical growth or even <inline-formula><tex-math id="M6">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is a true source term, we show that (ⅰ) the semi-flow originating from any point in the natural energy space <inline-formula><tex-math id="M7">\begin{document}$ {\mathcal H} $\end{document}</tex-math></inline-formula> lies in the stronger strong solution space <inline-formula><tex-math id="M8">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M9">\begin{document}$ t>0 $\end{document}</tex-math></inline-formula>; (ⅱ) the related solution semigroup <inline-formula><tex-math id="M10">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M11">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-global attractor <inline-formula><tex-math id="M12">\begin{document}$ {\mathscr A}^\kappa $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M13">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and the family of <inline-formula><tex-math id="M14">\begin{document}$ {\mathscr A}^\kappa, \kappa\in \Lambda $\end{document}</tex-math></inline-formula> is upper semicontinuous on <inline-formula><tex-math id="M15">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of stronger space <inline-formula><tex-math id="M16">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>; (ⅲ) <inline-formula><tex-math id="M17">\begin{document}$ S^\kappa(t) $\end{document}</tex-math></inline-formula> has a strong <inline-formula><tex-math id="M18">\begin{document}$ ({\mathcal H},{\mathcal H}_2) $\end{document}</tex-math></inline-formula>-exponential attractor <inline-formula><tex-math id="M19">\begin{document}$ \mathfrak {A}^\kappa_{exp} $\end{document}</tex-math></inline-formula> for each <inline-formula><tex-math id="M20">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> and it is Hölder continuous on <inline-formula><tex-math id="M21">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the topology of <inline-formula><tex-math id="M22">\begin{document}$ {\mathcal H}_2 $\end{document}</tex-math></inline-formula>. These results break through long-standing existed restriction for the attractors of the extensible beam models in energy space and show the optimal topology properties of them in the stronger phase space.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.