There is an urgent need for new strategies that allow the simultaneous detection and control of drug delivery. By making use of supramolecular host-guest interactions, a kind of pseudopolyrotaxanes, as a visualizable nanoscale drug carrier has been constructed by self-assembly of cucurbit[7]uril (CB[7]) with methoxy poly(ethylene glycol)-block-quaternized poly(4-vinyl pyridine) (mPEG-b-QP4VP) using 4-(chloromethyl)benzonitrile. Simple addition of CB[7] into an aqueous solution of mPEG-b-QP4VP resulted in noncovalent attachment of CB[7] to 4-cyanobenzyl-containing polymers, transforming the nonemissive mPEG-b-QP4VP micelles into highly fluorescent micelles. These pseudopolyrotaxanes micelles exhibited remarkable supramolecular assembly-induced emission enhancement and excellent biocompatibility, showing great potential for bioimaging applications. In addition, the efficient cellular uptake of the developed pseudopolyrotaxanes micelles loaded with the anticancer drug doxorubicin was a promising platform for simultaneous cell imaging and drug delivery, thereby widening their application in cancer theranostics.