Developing sponge materials integrating excellent flame retardancy, multitasking separation performance, and efficient emulsion-breaking ability is significant but challenging for the remediation of oil spills causing fires and environmental damages. Herein, a superhydrophobic oil-water separation sponge material, containing a melamine-formaldehyde (MF) sponge substrate, magnetic polydopamine (PDA) coating, and branched polydimethylsiloxane (PDMS) brush, through dopamine-mediated surface initiated atom transfer radical polymerization (SI-ATRP) is fabricated. The synergistic flame resistance of the MF substrate and PDMS brush significantly improves its adaptability in fire. More importantly, the decorated PDMS brushes can effectively overcome the size mismatch between sponge macropores and tiny emulsified droplets, while remaining the intrinsic macroporous characteristic. When treating W/O emulsions, the PDMS brushes stretch up to act as "interface-breaking blades" to accelerate the coalescence of emulsified water droplets. Meanwhile, such PDMS brushes can serve as "oil-trapping tentacles" to efficiently capture oil droplets when treating O/W emulsions. Such material design synergistically contributes to satisfactory separation efficiency (98.7%) and ultrahigh permeation flux (up to 1.35 × 10 5 L m −2 h −1 ), even for treating high viscosity emulsions. Besides, the reported sponge also inherits robust durability, superior recyclability, and convenient magnetic collection. These features make the sponge promising for multitasking and highly efficient oil-water separation.
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely 'protein sub-subcellular location prediction', which goes one level deeper than classic protein subcellular location prediction.
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.