We investigate the applicability of the two major approximations which are most commonly employed in the study of the quantum Rabi model, namely the description of a resonant cavity mode as a single-mode quantized field and the use of the rotating wave approximation. Starting from the Hamiltonian of a two-level system interacting with a multi-mode quantized field, we perform the canonical transformation of the field operators. This allows one to partition the Hamiltonian of the system into two parts. The first part is the interaction of the two-level system with a single collective field mode, while the second one describes the interaction with field fluctuations. The first part is usually associated with the resonant cavity mode. This division enables us to determine the applicability condition of the single-mode approximation. In addition we identify simple approximate relations for the description of the eigenstates, eigenfunctions and the time evolution of the quantum Rabi model beyond the rotating wave approximation.