Moves to legalize marijuana highlight the urgency to investigate effects of chronic marijuana in the human brain. Here, we challenged 48 participants (24 controls and 24 marijuana abusers) with methylphenidate (MP), a drug that elevates extracellular dopamine (DA) as a surrogate for probing the reactivity of the brain to DA stimulation. We compared the subjective, cardiovascular, and brain DA responses (measured with PET and [ 11 C]raclopride) to MP between controls and marijuana abusers. Although baseline (placebo) measures of striatal DA D2 receptor availability did not differ between groups, the marijuana abusers showed markedly blunted responses when challenged with MP. Specifically, compared with controls, marijuana abusers had significantly attenuated behavioral ("self-reports" for high, drug effects, anxiety, and restlessness), cardiovascular (pulse rate and diastolic blood pressure), and brain DA [reduced decreases in distribution volumes (DVs) of [ 11 C]raclopride, although normal reductions in striatal nondisplaceable binding potential (BP ND )] responses to MP. In ventral striatum (key brain reward region), MP-induced reductions in DVs and BP ND (reflecting DA increases) were inversely correlated with scores of negative emotionality, which were significantly higher for marijuana abusers than controls. In marijuana abusers, DA responses in ventral striatum were also inversely correlated with addiction severity and craving. The attenuated responses to MP, including reduced decreases in striatal DVs, are consistent with decreased brain reactivity to the DA stimulation in marijuana abusers that might contribute to their negative emotionality (increased stress reactivity and irritability) and addictive behaviors.nucleus accumbens | amotivation | cannabinoid 1 receptors | brain imaging | midbrain D espite the high prevalence of marijuana consumption, the effects of marijuana abuse in the human brain are not well understood. Marijuana, like other drugs of abuse, stimulates brain dopamine (DA) signaling in the nucleus accumbens (1, 2), which is a mechanism believed to underlie the rewarding effects of drugs (3-5) and to trigger the neuroadaptations that result in addiction (reviewed in ref. 6). Indeed, in humans, imaging studies have shown that drugs of abuse increase DA release in striatum (including the nucleus accumbens), and these increases have been associated with the subjective experience of reward (7-9). However, for marijuana, the results have been inconsistent: One study reported striatal DA increases during intoxication (10); two studies showed no effects (11, 12); and one study reported DA increases in individuals with a psychotic disorder and in their relatives, but not in controls (13). Imaging studies of the brain DA system in marijuana abusers have also shown different findings from those reported for other types of substance abusers. Specifically, substance abusers (cocaine, methamphetamine, alcohol, heroin, and nicotine), but not marijuana abusers (14-16), show reduced baseline availability ...