This study describes the fabrication of hybrid two-dimensional (2D)-quantum dot (QD) MoS2–AgInS2 photoconductive devices through the mechanical pressing of a MoS2 flake onto an AgInS2 QD film. The devices exhibit an enhanced photoresponse at both continuous and modulated optical excitations, compared with the bare MoS2 or AgInS2 layer, due to the formation of a built-in electric field near the MoS2/AgInS2 interface. The continuous wave photoresponse is significantly higher due to the effective photoconductive gain when electrons flow freely through the MoS2 flake, whereas holes are effectively trapped in AgInS2 QDs. The study highlights the potential of hybrid 2D-QD MoS2–AgInS2 devices for photovoltaic and optoelectronic applications.