2Dengue disease is caused by four different flavivirus 1 serotypes, which infect 390 million people yearly with 25% symptomatic cases 2 and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (DENV--2) 3,4 . Structural studies so far have characterized only epitopes recognized by serotype specific human antibodies 5,6 . We recently isolated human antibodies potently neutralizing all four DENV serotypes 7 . Here we describe the X--ray structures of four of these broadly neutralizing antibodies (bnAbs) in complex with the envelope glycoprotein E from DENV--2, revealing that the recognition determinants are at a serotype conserved site at the E dimer interface, including the exposed main chain of the E fusion loop 8 and the two conserved glycan chains.This "E--dimer dependent epitope" (EDE) is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell 9 , explaining its conservation across serotypes and highlighting an Achilles heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.Exposed at the surface of infectious mature DENV particles, protein E is the sole target of neutralizing antibodies. It displays an icosahedral arrangement in which 90 E dimers completely coat the viral surface 10,11 and which is sensitive to the environmental pH. Upon entry of DENV into cells via receptor--mediated endocytosis, the acidic 3 endosomal environment triggers an irreversible fusogenic conformational change in E that leads to fusion of viral and endosomal membranes 1 . The structure of the isolated E dimer has been determined by X--ray crystallography using the soluble ectodomain (sE) 8,12 . Protein E is relatively conserved, displaying about 65% amino acid sequence identity when comparing the most distant DENV serotypes. In particular, there are two conserved N--linked glycosylation sites at positions N67 and N153. To examine its interaction with the antibodies, we selected four highly potent bnAbs identified in the accompanying work: 747(4) A11 and 747 B7 (EDE2 group, requiring glycosylation at position N153 for efficient binding) and 752--2 C8 and 753(3) C10 (EDE1 group, binding regardless of the glycosylation at N153) 7 -referred to as A11, B7, C8 and C10 from hereon. The EDE2 bnAbs were isolated from the same patient (who had a secondary infection with DENV--2), and are somatic variants of the same IgG clone, derived from the IGHV3--74 and IGLV2--23 germ lines. The heavy chain has a very long (26 amino acids, IMGT convention) complementarity--determining region 3 (CDR H3). The EDE1 bnAbs were isolated from different patients and derive from (EDE1 C8, the patient appeared to have a primary infection of undetermined serotype) and IGHV1--3* and IGLV2--14 (EDE1 C10, from a patient with secondary DENV--1 infecti...