2021
DOI: 10.48550/arxiv.2103.05730
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Structural Connectome Atlas Construction in the Space of Riemannian Metrics

Abstract: The structural connectome is often represented by fiber bundles generated from various types of tractography. We propose a method of analyzing connectomes by representing them as a Riemannian metric, thereby viewing them as points in an infinite-dimensional manifold. After equipping this space with a natural metric structure, the Ebin metric, we apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. We demonstrate connectome registration and atl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?