This paper presents an efficient, numerically stable algorithm for parallel transport of tangent vectors in the group of diffeomorphisms. Previous approaches to parallel transport in large deformation diffeomorphic metric mapping (LDDMM) of images represent a momenta field, the dual of a tangent vector to the diffeomorphism group, as a scalar field times the image gradient. This “scalar momenta” constraint couples tangent vectors with the images being deformed and leads to computationally costly horizontal lifts in parallel transport. This paper uses the vector momenta formulation of LDDMM, which decouples the diffeomorphisms from the structures being transformed, e.g., images, point sets, etc. This decoupling leads to parallel transport expressed as a linear ODE in the Lie algebra. Solving this ODE directly is numerically stable and significantly faster than other LDDMM parallel transport methods. Results on 2D synthetic data and 3D brain MRI demonstrate that our algorithm is fast and conserves the inner products of the transported tangent vectors.
The structural connectome is often represented by fiber bundles generated from various types of tractography. We propose a method of analyzing connectomes by representing them as a Riemannian metric, thereby viewing them as points in an infinite-dimensional manifold. After equipping this space with a natural metric structure, the Ebin metric, we apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. We demonstrate connectome registration and atlas formation using connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.
The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.