Kidney stone is the most painful and prevalent urological disorder of the urinary system throughout the world. Thus, analysis of kidney stones is an integral part in the evaluation of patents having stone disease. Spectroscopic investigations of stones provide an idea about the pathogenesis of stones for its better cure and treatment. Hence, the present work targets multispectroscopic investigations on kidney stones using Fourier transform infrared (FTIR) and wave dispersive X-ray fluorescence (WD-XRF) spectroscopy which are the most useful analytical methods for the purpose of bio-medical diagnostics. In the present study, FTIR spectral method is used to investigate the chemical composition and classification of kidney stones. The multicomponents of kidney stones such as calcium oxalate, hydroxyl apatite, phosphates, carbonates, and struvite were investigated and studied. Qualitative and quantitative determination of major and trace elements present in the kidney stones was performed employing WD-XRF spectroscopy. The wide range of elements determined in the kidney stones were calcium (Ca), magnesium (Mg), phosphorous (P), sodium (Na), potassium (K), chlorine (Cl), sulfur (S), silicon (Si), iodine (I), titanium (Ti), iron (Fe), ruthenium (Ru), zinc (Zn), aluminum (Al), strontium (Sr), nickel (Ni), copper (Cu), and bromine (Br). For the first time, ruthenium was detected in kidney stone samples employing WD-XRF in very low concentration. Our results revealed that the presence and relative concentrations of trace elements in different kinds of stones are different and depend on the stone types. From the experiments carried out on kidney stones for trace elemental detection, it was found that WD-XRF is a robust analytical tool that can be useful for the diagnosis of urological disorders. We have also compared our findings with the results reported using XRF technique. The results obtained in the present paper show interesting prospects for FTIR and WD-XRF spectrometry in nephrolithiasis. Copyright