Catalytic antibodies have emerged as powerful tools for the chemical biologist, enabling the design and realization of specific catalysis for a wide range of chemical reactions. Catalytic antibodies are grounded upon transition state theory and envisioned as programmable mimics of enzyme catalysis. Affinity maturation of the immune response for a small‐molecule hapten elicits binding site complementarity within an antibody that facilitates chemical catalysis. The evolution of hapten design strategies for chemical catalysis is presented, including the transition state analog approach, strain‐induced hapten design, “bait‐and‐switch,” and “reactive immunization.” The range and scope of antibody catalysis is examined by reaction class, highlighting structural and mechanistic investigations to explore the roots of chemical catalysis by these designer biocatalysts. Recently, antibodies, regardless of disposition or origin, have been shown to catalyze the oxidation of water, equipping the antibody with a mechanism for antigen decomposition. These recent developments are presented along with the utilization of this pathway in the oxidative degradation of a commonly abused drug. The achievements in antibody catalysis have enriched our scientific understanding of chemical catalysis, particularly by biological molecules in aqueous systems. However, realizing more operative rate enhancements on the same order as natural enzymes remains as the “holy grail” of this field.