Disease-related amyloid fibrils appear to share a common, but poorly understood, structure. We describe here the generation and preliminary characterization of two conformation-specific mAbs, WO1 and WO2, that bind to the amyloid fibril state of the Alzheimer's peptide A(1-40) but not to its soluble, monomeric state. Surprisingly, these Abs also bind to other disease-related amyloid fibrils and amyloid-like aggregates derived from other proteins of unrelated sequence, such as transthyretin, islet amyloid polypeptide, 2-microglobulin, and polyglutamine. At the same time, WO1 and WO2 do not bind to the native protein precursors of these amyloids, nor do they bind to other kinds of protein aggregates. This new class of Abs associated with a fundamental amyloid-folding motif appear to recognize a common conformational epitope with little apparent dependence on amino acid side chain information. These Abs should contribute to the understanding of amyloid structure, assembly, and toxicity and also may benefit the development of diagnostic and therapeutic agents for amyloid diseases.A myloid fibrils are highly insoluble, ordered protein aggregates involved in a number of human diseases (1, 2), including Alzheimer's disease (3) and type II diabetes (4). Although the protein components of amyloid fibrils from various disease states differ considerably from each other in primary sequence, all amyloid fibrils share common features, including a high degree of -sheet in a classical ''cross-'' pattern, a fibrillar morphology in electron microscopy, and the ability to bind and alter the spectroscopic properties of heteroaromatic dyes Congo red and thioflavin T (ThT) (5, 6). Although these common properties suggest that amyloid fibrils must share deeper similarities at the molecular level, the extent of similarity between the polypeptide-folding patterns of different amyloids is unknown. Details of the nature of the amyloid fold remain obscure because of technical limitations to obtaining high resolution structural information on large, insoluble, heterodisperse aggregates.Although mAbs have previously proved useful in the structural analysis of globular proteins, their use in the characterization of amyloid fibril structure has been limited. Most of the anti-fibril Abs generated in an immune response to fibrils tend to be directed at unstructured portions of the amyloidogenic peptide not involved in fibril structure. In a recent characterization of the Ab response in mice injected with amyloid  protein (A) fibrils, it was found that the majority of the Abs are directed at the N-terminal 12 residues of the peptide and are capable of crossreacting strongly with the monomeric peptide (7). This agrees well with the results of limited proteolysis studies of A fibrils indicating an exposed, unstructured N-terminal region in the aggregate (8). Thus, such Abs tell us about those parts of the amyloidogenic peptide that are not involved in fibril structure but little about the nature of fibril structure itself.Identification of c...