A recently popular Japanese yellow-green-skin table grape, 'Shine Muscat' (Vitis labruscana Bailey × V. vinifera L.), has the problem of berry skin browning, which occurs at the maturation stage just before harvest. Tiny reddish-brown blotches appear on the surface of berries and considerably decrease the grape's market value. Although the mechanisms and factors for browning are unknown, we hypothesized the involvement of polyphenol compounds and their oxidation reactions. In this study, the gene expressions of polyphenol oxidase (PPO), stilbene synthase (STS), and chalcone synthase (CHS), which are key enzymatic genes related to the metabolic pathway for polyphenols, were analyzed during berry maturation to examine the molecular basis for browning. Skin browning occurred on several berries in a bunch of 'Shine Muscat' from 80 days after full bloom (DAFB), after which the number of berries with skin browning increased, and the browned area spread on the berry surfaces with maturation. Increases in the expression of VvPPO2, VvSTS type B, and VvCHS1 were associated with skin browning, and the trans-resveratrol content also increased in the browning skin, suggesting that biosynthesis and metabolic pathways for phenolic compounds were activated at the time of browning. In terms of VvPPO genes, specific up-regulation of VvPPO2 expression was observed compared with the VvPPO1 gene. The promoter sequence of VvPPO2 contains more Myb binding motifs and W-box motifs than does VvPPO1. The specific up-regulation of VvPPO2 gene expression will play a crucial role in understanding and managing the skin-browning mechanism in the grape berries of 'Shine Muscat'.