The transient receptor potential A1 (TRPA1) channel is the molecular target for environmental irritants and pungent chemicals, such as cinnamaldehyde and mustard oil. Extracellular Ca 2؉ is a key regulator of TRPA1 activity, both potentiating and subsequently inactivating it. In this report, we provide evidence that the effect of extracellular Ca 2؉ on these processes is indirect and can be entirely attributed to entry through TRPA1 and subsequent elevation of intracellular calcium. Specifically, we found that in a pore mutant of TRPA1, D918A, in which Ca 2؉ permeability was greatly reduced, extracellular Ca 2؉ produced neither potentiation nor inactivation. Both processes were restored by reducing intracellular Ca 2؉ buffering, which allowed intracellular Ca 2؉ levels to become elevated upon entry through D918A channels. Application of Ca 2؉ to the cytosolic face of excised patches was sufficient to produce both potentiation and inactivation of TRPA1 channels. Moreover, in whole cell recordings, elevation of intracellular Ca 2؉ by UV uncaging of 1-(4,5-dimethoxy-2-nitrophenyl)-EDTA-potentiated TRPA1 currents. In addition, our data show that potentiation and inactivation are independent processes. TRPA1 currents could be inactivated by Mg 2؉ , Ba 2؉ , and Ca 2؉ but potentiated only by Ba 2؉ and Ca 2؉ . Saturating activation by cinnamaldehyde or mustard oil occluded potentiation but did not interfere with inactivation. Last, neither process was affected by mutation of a putative intracellular Ca 2؉ -binding EF-hand motif. In conclusion, we have further clarified the mechanisms of potentiation and inactivation of TRPA1 using the D918A pore mutant, an important tool for investigating the contribution of Ca 2؉ influx through TRPA1 to nociceptive signaling.
Members of the transient receptor potential (TRP)2 family of ion channels that are expressed by sensory neurons in dorsal root and trigeminal ganglia serve as sensors for temperature and noxious stimuli (1, 2). Of these, TRPA1 is one of the key sensors for pungent chemicals and environmental irritants and is essential for behavioral responses of mice to conditions that evoke inflammatory pain (3-7). Inflammatory mediators, such as bradykinin, bind to G protein-coupled receptors on nociceptors, initiating a second messenger signaling cascade that leads to Ca 2ϩ influx mediated in part by the opening of Ca 2ϩ -permeable TRPA1 channels (5,8,9). TRPA1 is also activated directly by a wide range of chemicals that cause painful sensations, including food additives, such as mustard oil (MO), cinnamaldehyde (Cin), onion, raw garlic, and thyme; environmental irritants, such as formaldehyde and acrolein (a component of automobile exhaust); and products of oxidative stress (4, 8, 10 -16). Many of these chemicals activate TRPA1 by binding covalently to reactive cysteine residues in the amino terminus of the protein (17, 18), producing a modification of the channel that can last for more than 1 h and which leads to persistent activation of TRPA1 currents (18,19). Ca 2ϩ plays at...