In order to elucidate the molecular adaptation mechanisms of enzymes to the high hydrostatic pressure of the deep sea, we cloned, purified, and characterized more than ten dihydrofolate reductases (DHFRs) from bacteria living in deep-sea and ambient atmospheric pressure environments. The nucleotide and amino acid sequences of these DHFRs indicate the deep-sea bacteria are adapted to their environments after the differentiation of their genus from ancestors inhabiting atmospheric pressure environments. In particular, the backbone structure of the deep-sea DHFR from Moritella profunda (mpDHFR) almost overlapped with the normal homolog from Escherichia coli (ecDHFR). Thus, those of other DHFRs would also overlap on the basis of their sequence similarities. However, the structural stability of both DHFRs was quite different: compared to ecDHFR, mpDHFR was more thermally stable but less stable against urea and pressure unfolding. The smaller volume changes due to unfolding suggest that the native structure of mpDHFR has a smaller cavity and/or enhanced hydration compared to ecDHFR. High hydrostatic pressure reduced the enzymatic activity of many DHFRs, but three deep-sea DHFRs and the D27E mutant of ecDHFR exhibited pressure-dependent activation. The inverted activation volumes from positive to negative values indicate the modification of their structural dynamics, conversion of the rate-determining step of the enzymatic reaction, and different contributions of the cavity and hydration to the transition-state structure. Since the cavity and hydration depend on amino acid side chains, DHFRs would adapt to the deep-sea environment by regulating the cavity and hydration by substituting their amino acid side chains without altering their backbone structure. The results of this study clearly indicate that the cavity and hydration play important roles in the adaptation of enzymes to the deep-sea environment.