The particle swamp optimization procedure was applied to high-quality magnetic data acquired from the Precambrian Obudu basement complex in Nigeria with the object of estimating the distinctive body parameters (depth (z), index angle (θ), amplitude coefficient (K), shape factor (Sf), and location of the origin (x0)) of magnetic models. The magnetic models were obtained from four profiles that ran perpendicular to the observed magnetic anomalies within the study area. Profile A–A’ with a length of 2600 m is characterized by inverted model parameters of K = 315.67 nT, z = 425.34 m, θ = 43°, Sf = 1.15, and x0 = 1554.86 m, while profile B–B’ with a length of 5600 m is described by K = 257.71 nT, z = 543.75 m, θ = 54°, Sf = 0.96, and x0 = 3645.42 m model parameters. Similarly, profile C–C’ with a length of 3000 m is defined by K = 189.53 nT, z = 560.87 m, θ = 48, Sf = 1.2, and x0 = 1950 m. Profile D–D’, which is well-defined by a 2500 m length, started at the crest of the observed magnetic anomaly and displays inverted model parameters of 247.23 nT, 394.16 m, 39°, 1.26, and 165.41 m. Correlatively, the estimated shape factor of the four models (Sf = 1.15, 0.96, 1.2, and 1.26) shows that the magnetic models are linked to thin sheets. Furthermore, quantitative interpretations of the models show that the PSO operation is rapid and proficient.