“…gas sensing mechanism 半导体金属氧化物自从 1962 年首次作为敏感 材料引入气体传感器领域以来, 便以响应迅速、精 度高、体积小和成本低廉等诸多优势得到广泛而深 入的研究和发展 [1] 。目前半导体金属氧化物不仅被 应用于低浓度的易燃 [2][3] 、易爆气体 [4][5] 、有毒有害 的挥发性有机气体的检测 [6][7][8][9] , 还被广泛用于化学 杀伤性武器-神经介子气 [10][11] 、人体呼吸气体的检 测 [12][13][14] 等。为了满足低浓度、高敏感度、选择性和 稳定性等诸多检测标准的提高, 越来越多的研究人 员希望改善决定半导体材料灵敏度和选择性的基本 功能性因素, 从根本上改善元件的气敏特性。归根 结底, 决定气敏元件的灵敏度和选择性的因素仍然 是敏感材料的基本属性: 如感知功能和传感功能, 敏感材料的粒径尺寸, 半导体的价位和 Debye 长度 以及元素的稳定性等基本属性 [15][16] 。N 型半导体感 知功能是靠表面的吸附氧含量来实现的, 而吸附氧 的含量也决定了其与目标气体作用时的灵敏度和选 择性 [15] 。敏感材料的粒径大小也是影响敏感材料气 敏性能的重要因素, 相同条件下, 粒径越小, 响应 值越高。改善元件气敏特性的方法是尽可能的增加 敏感材料表面吸附氧含量, 扩大敏感材料的比表面 积。提高敏感材料的表面活性也是增加表面吸附氧 含量的有效手段 [15,[17][18] 。 众所周知, N 型半导体的表面吸附氧会产生一 个耗尽电子层, 耗尽电子层的厚度与敏感材料晶界 势垒的高度一致取决于敏感材料表面吸附氧的含量 和 Debye 长度 [19] 。 两种 N 型半导体敏感材料在复合 过程中会产生 N-N 同型异质结, 不同势垒高度的两 种材料在复合过程中晶界势垒通过电子和空穴的转 移而达到一种新的平衡。这种新的平衡过程会改变 吸附氧的含量, 增加敏感材料吸附氧的含量, 从而 改善气敏感元件的敏感特性 [20][21][22] [26][27]…”