The P2Y 1 receptor responds to adenine nucleotides and is present in platelets, heart, smooth muscles prostate, ovary, and brain. A selective antagonist may be useful as an antithrombotic agent. We have analyzed the binding site of this G protein-coupled receptor using ligand design, site-directed mutagenesis, and homology modeling based on rhodopsin. We have designed and synthesized a series of deoxyadenosine 3′,5′-bisphosphate derivatives that act as antagonists, or, in some cases with small structural changes, as agonists or partial agonists. The 2-position accommodates Cl or thioethers, whereas the N 6 -position is limited to Me or Et. 2′-Substitution with OH or OMe increases agonist efficacy over 2′-H. Using molecular modeling of the binding site, the oxygen atoms of the ribose moiety were predicted to be non-essential, i.e. no specific Hbonds with the receptor protein appear in the model. We have, therefore, substituted this moiety with carbocylics, smaller and larger rings, conformationally constrained rings, and acyclics, with retention of affinity for the receptor. With simplified pharmacophores we are exploring the steric and electronic requirements of the receptor binding site, and the structural basis of receptor activation.