Historically, microorganisms have proven to be efficient alternatives for the removal of PCBs, since these contaminants continue to be a major problem for human health and the environment. In this work, the removal of decachlorobiphenyl (PCB-209) was evaluated using native bacterial strains individually and in consortia through biostimulation and bioaugmentation processes. Bacillus sp. DCB13, Staphylococcus sp. DCB28, and Acinetobacter sp. DCB104 were biostimulated in a minimal medium that initially contained biphenyl and later PCB-209 for adaptation as a carbon source. The removal potential of PCB-209 by bacterial strains was evaluated in a bioaugmentation process under aerobic conditions. Using a completely randomized design, ten different treatments were evaluated. Finally, the bacterial growth (CFU/g of soil) and the chemical characteristics of the bioaugmented soil were determined, as was the content of PCB-209 removed by gas chromatography–mass spectrometry. Strains DCB13, DCB28, and DCB104 showed cell growth (>3.4 × 105 CFU/mL) during 120 h of biostimulation, with a marked difference between treatments with biphenyl compared with those where PCB-209 was added. Strains DCB13 and DCB104 (3.4 × 105 CFU/mL and 2.0 × 106 CFU/mL, respectively) grew better with PCB-209, while DCB28 grew better with biphenyl (4.5 × 106 CFU/mL). In bioaugmented soils contaminated with PCB-209, the strains showed maximum growth when inoculated in a consortium (>2.0 × 104 CFU/g). The results showe that the range of the bacterial elimination of PCB-209 in the treatments was from 9.58 to 17.33 mg/kg. The highest elimination potential of PCB-209 was obtained when the bacterial strains were inoculated in a consortium. These findings open a wide perspective for the use of native bacteria for the cleaning and restoration of soils contaminated by toxic chemicals.