Male and female poplars (Populus cathayana Rehd.) respond differently to nitrogen (N) and phosphorus (P) deficiencies. In this study, an iTRAQ-based quantitative proteomic analysis was performed. N and P deficiencies caused 189 and 144 proteins to change in abundance in males and 244 and 464 in females, respectively. Compared to N- and P-deficient males, both N- and P-deficient females showed a wider range of changes in proteins that are involved in amino acid, carbohydrate and protein metabolism, and the sexual differences were significant. When comparing the effects of N- and P-deficiencies, N-deficient females expressed more changes in proteins that are involved in stress responses and gene expression regulation, while P-deficient females showed more changes in proteins that are involved in energy and lipid metabolism, stress responses and gene expression regulation. The quantitative RT-PCR analysis of stress-related proteins showed that males have a better expression correlation between mRNA and protein levels than do females. This study shows that P. cathayana females are more sensitive and have more rapid metabolic mechanisms when responding to N and P deficiencies than do males, and P deficiency has a wider range of effects on females than does N deficiency.