We present deep imaging of the ultra-diffuse Andromeda XIX dwarf galaxy from the Advance Camera for Surveys on the Hubble Space Telescope which resolves its stellar populations to below the oldest main sequence turn-off. We derive a full star formation history for the galaxy using MATCH, and find no evidence of star formation in the past 8 Gyr. We calculate a quenching time of τ90 = 9.7 ± 0.2 Gyr, suggesting Andromeda XIX ceased forming stars very early on. This early quenching, combined with its extremely large half-light radius, low density dark matter halo and lower than expected metallicity make it a unique galaxy within the Local Group and raises questions about how it formed. The early quenching time allows us to rule out feedback from bursty star formation as a means to explain its diffuse stellar population and low density dark matter halo. We find that the extended stellar population, low density halo and star formation could be explained by either tidal interactions (such as tidal shocking) or by late dry mergers, with the latter also explaining its low metallicity. Proper motions and detailed abundances would allow us to distinguish between these two scenarios.