a Solution-processed organic photovoltaic devices are advantageous due to their low-cost large area manufacturing techniques, such as slot-die coating, gravure printing and roll-to-roll coating. The final microstructure of a polymer:fullerene bulk-heterojunction (BHJ) film is a fine interplay between solution thermodynamics (e.g. solubility, miscibility. . .) and kinetics (e.g. solvent evaporation, polymer ordering, phase separation. . .) during the drying process. In order to design better performing organic photovoltaic devices, gaining knowledge over the drying properties of polymer:fullerene thin films is essential.A novel in situ thin film drying characterization chamber, equipped with white-light reflectometry, laser light scattering and photoluminescence, is presented in combination with grazing-incidence X-ray diffraction on two different polymer:fullerene bulk heterojunctions based on poly-(3-hexylthiophene-2,5-diyl) (P3HT) and polythieno [3,2b]thiophene-diketopyrrolopyrrole-co-thiophene (DPP-TT-T) polymers.With photoluminescence applied for the first time as an in situ method for such drying studies, these single-chamber measurements track the fine interplay between thermodynamics and kinetics of thin film drying and provide invaluable information on solution behavior and microstructure formation.