Purpose
Overhead high-voltage transmission line (HVTL) inspection robots are used to inspect the transmission lines and/or maintain the infrastructures of a power transmission grid. One of the most serious problems is that the load on the front wheel is much larger than that on the back one when the robot travels along a sloping earth wire. Thus, ongoing operation of the inspection robot mainly depends on the front wheel motor’s ability. This paper aims to extend continuous operation time of the HVTL inspection robots.
Design/methodology/approach
By introducing a traction force model, the authors have established a dynamic model of the robot with slip. The total load is evenly distributed to both wheels. According to the traction force model, the desired wheel slip is calculated to achieve the goal of load balance. A wheel slip controller was designed based on second-order sliding-mode control methodology.
Findings
This controller accomplishes the control objective, such that the actual wheel slip tracks the desired wheel slip. A simulation and experiment verify the feasibility of the load balance control system. These results indicate that the loads on both wheels are generally equal.
Originality/value
By balancing the loads on both wheels, the inspection robot can travel along the earth wire longer, improving its efficiency.