SignificanceMacropinocytosis and phagocytosis are two Ras-regulated, highly related processes of great physiological relevance collectively termed large-scale endocytosis. Both are actin-driven and entail engulfment of extracellular material by crown-like protrusions. Aside from the Arp2/3 complex, which serves as the main nucleator of branched actin filaments at the cup rim, the underlying mechanisms of actin assembly still remain elusive. Here, we analyzed the role of Diaphanous-related formin G (ForG) from Dictyostelium by biochemical, genetic, and imaging techniques. Our data demonstrate that this formin exhibits a rather weak nucleation activity and imply that ForG-mediated filament elongation synergizes with the Arp2/3 complex in actin assembly. Finally, we identify ForG as a Ras-regulated formin and show its significance for actin assembly in endocytic structures.