SignificanceMacropinocytosis and phagocytosis are two Ras-regulated, highly related processes of great physiological relevance collectively termed large-scale endocytosis. Both are actin-driven and entail engulfment of extracellular material by crown-like protrusions. Aside from the Arp2/3 complex, which serves as the main nucleator of branched actin filaments at the cup rim, the underlying mechanisms of actin assembly still remain elusive. Here, we analyzed the role of Diaphanous-related formin G (ForG) from Dictyostelium by biochemical, genetic, and imaging techniques. Our data demonstrate that this formin exhibits a rather weak nucleation activity and imply that ForG-mediated filament elongation synergizes with the Arp2/3 complex in actin assembly. Finally, we identify ForG as a Ras-regulated formin and show its significance for actin assembly in endocytic structures.
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA−/E−/H− and racE− mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Macropinocytosis and phagocytosis are evolutionarily conserved forms of bulk endocytosis used by cells to ingest large volumes of fluid and solid particles, respectively. Both processes are regulated by Ras signaling, which is precisely controlled by mechanisms involving Ras GTPase activating proteins (RasGAPs) responsible for terminating Ras activity on early endosomes. While regulation of Ras signaling during large-scale endocytosis in WT Dictyostelium has been, for the most part, attributed to the Dictyostelium ortholog of human RasGAP NF1, in commonly used axenic laboratory strains, this gene is mutated and inactive. Moreover, none of the RasGAPs characterized so far have been implicated in the regulation of Ras signaling in large-scale endocytosis in axenic strains. In this study, we establish, using biochemical approaches and complementation assays in live cells, that Dictyostelium IQGAP-related protein IqgC interacts with active RasG and exhibits RasGAP activity toward this GTPase. Analyses of iqgC− and IqgC-overexpressing cells further revealed participation of this GAP in the regulation of both types of large-scale endocytosis and in cytokinesis. Moreover, given the localization of IqgC to phagosomes and, most prominently, to macropinosomes, we propose IqgC acting as a RasG-specific GAP in large-scale endocytosis. The data presented here functionally distinguish IqgC from other members of the Dictyostelium IQGAP family and call for repositioning of this genuine RasGAP outside of the IQGAP group.
Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
With the recent development of single-molecule localization-based superresolution microscopy, the imaging of cellular structures at a resolution below the diffraction-limit of light has become a widespread technique. While single fluorescent molecules can be resolved in the nanometer range, the delivery of these molecules to the authentic structure in the cell via traditional antibody-mediated techniques can add substantial error due to the size of the antibodies. Accurate and quantitative labeling of cellular molecules has thus become one of the bottlenecks in the race for highest resolution of target structures. Here we illustrate in detail how to use small, high affinity nanobody binders against GFP and RFP family proteins for highly generic labeling of fusion constructs with bright organic dyes. We provide detailed protocols and examples for their application in superresolution imaging and single particle tracking and demonstrate advantages over conventional labeling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.