Activity-dependent neuronal plasticity is a fundamental mechanism through which the nervous system adapts to sensory experience. Several lines of evidence suggest that parvalbumin (PV+) interneurons are essential in this process, but the molecular mechanisms underlying the influence of experience on interneuron plasticity remain poorly understood. Perineuronal nets (PNNs) enwrapping PV+ cells are long-standing candidates for playing such a role, yet their precise contribution has remained elusive. We show that the PNN protein Brevican is a critical regulator of interneuron plasticity. We find that Brevican simultaneously controls cellular and synaptic forms of plasticity in PV+ cells by regulating the localization of potassium channels and AMPA receptors, respectively. By modulating Brevican levels, experience introduces precise molecular and cellular modifications in PV+ cells that are required for learning and memory. These findings uncover a molecular program through which a PNN protein facilitates appropriate behavioral responses to experience by dynamically gating PV+ interneuron function.
SummaryThe active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix.
A diffusion barrier impeding membrane molecule motion between the axon and the somatodendritic compartment develops as neurons mature and the axon initial segment (AIS) is enriched in specific molecules. Albrecht et al. analyze the mobility of lipid-anchored molecules in the AIS using single-particle tracking time course experiments and propose a new mechanistic model for the AIS diffusion barrier.
With the recent development of single-molecule localization-based superresolution microscopy, the imaging of cellular structures at a resolution below the diffraction-limit of light has become a widespread technique. While single fluorescent molecules can be resolved in the nanometer range, the delivery of these molecules to the authentic structure in the cell via traditional antibody-mediated techniques can add substantial error due to the size of the antibodies. Accurate and quantitative labeling of cellular molecules has thus become one of the bottlenecks in the race for highest resolution of target structures. Here we illustrate in detail how to use small, high affinity nanobody binders against GFP and RFP family proteins for highly generic labeling of fusion constructs with bright organic dyes. We provide detailed protocols and examples for their application in superresolution imaging and single particle tracking and demonstrate advantages over conventional labeling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.