Laser heat-treatment and laser nitriding were conducted on an AISI P21 mold steel using a high-power diode laser with laser energy densities of 90 and 1125 J/mm2, respectively. No change in surface hardness was observed after laser heat-treatment. In contrast, a relatively larger surface hardness was measured after laser nitriding (i.e., 536 HV) compared with that of the base metal (i.e., 409 HV). The TEM and electron energy loss spectroscopy (EELS) analyses revealed that laser nitriding induced to develop AlN precipitates up to a depth of 15 μm from the surface, resulting in surface hardening. The laser-nitrided P21 exhibited a superior wear resistance compared with that of the base metal and laser heat-treated P21 in the pin-on-disk tribotests. After 100 m of a sliding distance of the pin-on-disk test, the total wear loss of the base metal was measured to be 0.74 mm3, and it decreased to 0.60 mm3 for the laser-nitrided P21. The base metal and laser heat-treated P21 showed similar wear behaviors. The larger wear resistance of the laser-nitrided P21 was attributed to the AlN precipitate-induced surface hardening.