To fully release the potential of wide bandgap (WBG) semiconductors and achieve high energy density and efficiency, a carbonyl iron soft magnetic composite (SMC) with an easy plane-like structure is prepared. Due to this structure, the permeability of the composite increases by 3 times (from 7.5 to 21.5) at 100 MHz compared with to the spherical carbonyl iron SMC, and the permeability changes little at frequencies below 100 MHz. In addition, the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz. The total core losses of the composites at 10, 20, and 30 mT are 80.0, 355.3, and 810.7 mW/cm3, respectively, at 500 kHz. Compared with the spherical carbonyl iron SMC, the core loss at 500 kHz is reduced by more than 60%. Therefore, this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics.