A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. Abstract Scanning tunnelling microscopy (STM) is capable of imaging molecules adsorbed onto surfaces with sufficient resolution as to permit intramolecular features to be discerned. Therefore, imaging molecules subject to the Jahn-Teller (JT) effect could, in principle, yield valuable information about the vibronic coupling responsible for the JT effect. However, such an application is not without its complications. For example, the JT effect causes subtle, dynamic distortions of the molecule; but how will this dynamic picture be affected by the host surface? And what will actually be imaged by the rather slow STM technique? Our aim here is to present a systematic investigation of the complications inherent in JT-related STM studies, to seek out possible JT signatures in such images and to guide further imaging towards identification and quantification of JT effects in molecules on surfaces. In particular, we consider the case of surface-adsorbed C 60 ions because of their propensity to exhibit JT effects, their STM-friendly size and because a better understanding of the vibronic effects within these ions may be important for realisation of their potential application as superconductors.