-2 -We use single-epoch spectroscopy of three gravitationally lensed quasars, HE0435-1223, WFI2033-4723, and HE2149-2745, to study their inner structure (BLR and continuum source). We detect microlensing-induced magnification in the wings of the broad emission lines of two of the systems (HE0435-1223 and WFI2033-4723). In the case of WFI2033-4723, microlensing affects two "bumps" in the spectra which are almost symmetrically arranged on the blue (coincident with an Al III emission line) and red wings of C III]. These match the typical double-peaked profile that follows from disk kinematics. The presence of microlensing in the wings of the emission lines indicates the existence of two different regions in the BLR: a relatively small one with kinematics possibly related to an accretion disk, and another one that is substantially more extended and insensitive to microlensing. There is good agreement between the estimated size of the region affected by microlensing in the emission lines, r s = 10 M/M ⊙ light-days. The estimates of p, the exponent of the size vs. wavelength (r s ∝ λ p ), are 1.2 ± 0.6, 0.8 ± 0.2, and 0.4 ± 0.3 for HE0435-1223, WFI2033-4723, and HE2149-2745, respectively. In conclusion, the continuum microlensing amplitude in the three quasars and chromaticity in WFI2033-4723 and HE2149-2745 are below expectations for the thin disk model. The disks are larger and their temperature gradients are flatter than predicted by this model.