We report on a program to obtain Hubble Space T elescope (HST ) observations of galaxy-mass gravitational lens systems at optical and infrared wavelengths. Here we discuss the properties of 10 two- We Ðt a set of four standard lens models to each lens that had sufficient constraints to compare isothermal dark matter and constant mass-to-light lens models, and to explore the e †ects of local tidal shears.
We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U −B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∼40% intrinsic scatter compared to B-band.Subject headings: supernovae: general -techniques: photometric Data and Reduction DiscoveryOur program of supernova photometry consists solely of follow-up; we search only our email, not the sky, to find new supernovae. A number of observers, both amateur and professional, are engaged in searching for supernovae. We rely on these searches, as well as prompt notification of candidates, coordinated by Dan Green and Brian Marsden of the IAU's Central Bureau for Astronomical Telegrams (CBAT), with confirmed SN reported in the IAU Circulars. In some cases the SN discoverers provide spectroscopic classification of the new objects, but generally spectroscopy is obtained by others, and reported separately in the IAU Circulars. With our spectroscopic SN follow-up program at the F. L. Whipple Observatory 1.5m telescope and FAST spectrograph (Fabricant et al. 1998), we have classified a large fraction of the new, nearby supernovae reported over the last several years and compiled a large spectroscopic database (Matheson et al. 2005, in preparation).Given a newly discovered and classified supernova, several factors help determine whether or not we include it in our monitoring program. Because of their importance, SN Ia are often given higher priority over other types, but factors such as ease of observability (southern targets and those discovered far to the west are less appealing), supernova phase (objects whose spectra indicate they are after maximum light are given lower priority), redshift (more nearby objects are favored), as well as the number of objects we are already monitoring are significant. Our final sample of well-observed SN Ia is not obtained from a single well-defined set of criteria, and selection effects in both the searches and follow-up may make this sample unsuitable for some applications (such as determining the intrinsic luminosity function of SN Ia, for example). A thorough discussion of the selection biases in the Calán/Tololo supernova search and follow-up campaign can be found in Hamuy & Pinto (1999).The discovery data for the sample of SN Ia presented here are given in Table 1. All of the ...
We estimate the fraction of mass that is composed of compact objects in gravitational lens galaxies. This study is based on microlensing measurements (obtained from the literature) of a sample of 29 quasar image pairs seen through 20 lens galaxies. We determine the baseline for no microlensing magnification between two images from the ratios of emission line fluxes. Relative to this baseline, the ratio between the continua of the two images gives the difference in microlensing magnification. The histogram of observed microlensing events peaks close to no magnification and is concentrated below 0.6 magnitudes, although two events of high magnification, ∆m ∼ 1.5, are also present. We study the likelihood of the microlensing measurements using frequency distributions obtained from simulated microlensing magnification maps for different values of the fraction of mass in compact objects, α. The concentration of microlensing measurements close to ∆m ∼ 0 can be explained only by simulations corresponding to very low values of α (10% or less). A maximum likelihood test yields α = 0.05 +0.09 −0.03 (90% confidence interval) for a quasar continuum source of intrinsic size r s 0 ∼ 2.6 · 10 15 cm. This estimate is valid in the 0.1 − 10M ⊙ range of microlens masses. We study the dependence of the estimate of α with r s 0 , and find that α 0.1 for r s 0 1.3 · 10 16 cm. High values of α are possible only for source sizes much larger than commonly expected (r s 0 >> 2.6 · 10 16 cm). Regarding the current controversy about Milky Way/LMC and M31 microlensing studies, our work supports the hypothesis of a very low content in MACHOS (Massive Compact Halo Objects). In fact, according to our study, quasar microlensing probably arises from the normal star populations of lens galaxies and there is no statistical evidence for MACHOS in the dark halos.
We investigate the evolution of mass-selected early-type field galaxies using a sample of 28 gravitational lenses spanning the redshift range 0 z 1. Based on the redshiftdependent intercept of the fundamental plane in the rest frame B band, we measure an evolution rate of d log(M/L) B /dz = −0.56 ± 0.04 (all errors are 1σ unless noted) if we directly compare to the local intercept measured from the Coma cluster. Refitting the local intercept helps minimize potential systematic errors, and yields an evolution rate of d log(M/L) B /dz = −0.54 ± 0.09. An evolution analysis of properlycorrected aperture mass-to-light ratios (defined by the lensed image separations) is closely related to the Faber-Jackson relation. In rest frame B band we find an evolution rate of d log(M/L) B /dz = −0.41 ± 0.21, a present-day characteristic magnitude of M * 0 = −19.70 + 5 log h ± 0.29 (assuming a characteristic velocity dispersion of σ DM * = 225 km s −1 ), and a Faber-Jackson slope of γ F J = 3.29 ± 0.58. The measured evolution rates favor old stellar populations (mean formation redshift z f > 1.8 at 2σ confidence for a Salpeter initial mass function and a flat Ω m = 0.3 cosmology) among early-type field galaxies, and argue against significant episodes of star formation at z < 1.
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (∆χ 2 ∼ 5400). The planet/host mass ratio is q = 5.3 ± 0.2 × 10 −3 . The best fit projected separation is s = 0.548 ± 0.005 Einstein radii. However, due to the s ↔ s −1 degeneracy, projected separations of s −1 are only marginally disfavored at ∆χ 2 = 3. A Bayesian estimate of the host mass gives M L = 0.43 +0.27 −0.17 M ⊙ , with a sharp upper limit of M L < 1.2 M ⊙ from upper limits on the lens flux. Hence, the planet mass is m p = 2.4 +1.5 −0.9 M Jup , and the physical projected separation is either r ⊥ ≃ 1.0 AU or r ⊥ ≃ 3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the ∆χ 2 is much smaller (∆χ 2 ∼ 500) than with the followup data. The ∆χ 2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.