For bare lead ions, decelerated to the low beam energy of 10 MeV/u, the x-ray emission associated with radiative recombination (RR) at "cold collision" conditions has been studied at the electron cooler of CRYRING@ESR at GSI-Darmstadt. Utilizing dedicated x-ray detection chambers installed at 0°and 180°observation geometry, we observed for the very first time for stored ions the full x-ray emission spectrum associated with RR under electron cooling conditions. Most remarkably, no line distortion effects due to delayed emission are present in the well resolved spectra, spanning over a wide range of x-ray energies (from about 5 to 100 keV) which enable to identify fine-structure resolved Lyman, Balmer as well as Paschen x-ray lines along with the RR transitions into the K-, L and M-shell of the ions. To compare with theory, an elaborate theoretical model has been applied. By considering the relativistic atomic structure of Pb 81+ , this model is based on a sophisticated computation of the initial population distribution via RR for all atomic levels up to Rydberg states with principal quantum number n = 165 in combination with cascade calculations based on timedependent rate equations. Within the statistical accuracy, the experimental x-ray line emission is in very good agreement with the results of the theoretical model applied. Most notably, this comparison sheds light on the contribution of prompt and delayed X-ray emission (up to 70 ns) to the observed X-ray spectra, originating in particular from Yrast transitions into inner shells.