The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many molecules. In dense interstellar clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density and temperature. But observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. Models of diffuse clouds have, however, been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons (e-), the electron fraction, and the cosmic-ray ionization rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards Persei) where the electron fraction is already known. From these, we find that the cosmic-ray ionization rate along this line of sight is 40 times faster than previously assumed. If such a high cosmic-ray flux is ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.
Dissociative recombination (DR) of molecular ions with electrons is a complex, poorly understood molecular process. Its critical role as a neutralising agent in the Earth's upper atmosphere is now well established and its occurrence in many natural and laboratory-produced plasma has been a strong motivation for studying the event. In this book theoretical concepts, experimental methodology and applications are united, revealing the governing principles behind the gas-phase reaction. The book takes the reader through the intellectual challenges posed, describing in detail dissociation mechanisms, dynamics, diatomic and polyatomic ions and related processes, including dissociative excitation, ion pair formation and photodissociation. With the final chapter dedicated to applications in astrophysics, atmospheric science, plasma physics and fusion research, this is a focused, definitive guide to a fundamental molecular process. The book will appeal to academics within physics, physical chemistry and related sciences.
We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.
The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH 3 OH 2 + and CD 3 OD 2 + have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH 3 OH 2 + and CD 3 OD 2 + , respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C-O bond, the major process being the three-body break-up forming CH 3 , OH and H (CD 3 , OD and D). The overall cross sections are best fitted by s = 1.2 AE 0.1 Â 10 À15 E À1.15AE0.02 cm 2 and s = 9.6 AE 0.9 Â 10 À16 E À1.20AE0.02 cm 2 for CH 3 OH 2 + and CD 3 OD 2 + , respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 AE 0.9 Â 10 À7 (T/300) À0.59AE0.02 cm 3 s À1 (CH 3 OH 2 + ) and k(T) = 9.1 AE 0.9 Â 10 À7 (T/300) À0.63AE0.02 cm 3 s À1 (CD 3 OD 2 + ) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH 3 + and H 2 O and subsequent dissociative recombination of the resulting CH 3 OH 2 + ion to yield methanol and hydrogen atoms is therefore very unlikely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.