We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the timedependent gas-phase chemistry of 0D and 1D interstellar sources.
Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.
We report a new method for calculating the Wigner transform of the Boltzmann operator in the canonical ensemble. The transform is accomplished by writing the Boltzmann operator in a semiharmonic form, utilizing the variational centroid effective frequencies introduced by Feynman and Kleinert (FK). The approximate many-body Wigner transformed Boltzmann operator is then utilized with a linearized path integral (LPI) representation for correlation functions. It is shown that this new FK-LPI method is capable of calculating quite accurately the short time behavior of linear and highly nonlinear correlation functions for low temperature Lennard-Jones model systems and that it is vastly superior to classical dynamics. The feasibility of the FK-LPI method for large systems is illustrated by considering a model liquid composed of 32 oxygen molecules with periodic boundary conditions. Initial conditions for molecular dynamics are obtained from its Boltzmann Wigner transform and the FK-LPI method is shown to describe correctly the zero-point motion of the liquid. The effective frequency representation of the Wigner transformed thermal density operator provides an efficient way of sampling nonclassical initial conditions for molecular-dynamics simulations more generally. Applications to vibrational energy relaxation and rate constant calculations in complex molecular systems are discussed.
We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.
Thermal rate constants are calculated for the H + CH 4 f CH 3 + H 2 reaction employing the potential energy surface of Espinosa-García (Espinosa-García, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.; Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-García surface results in larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common temperature range. Comparison is also made with various tunneling corrections to transition state theory and quantum instanton theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.