Within the harmonic approximation to transition state theory, the biggest challenge involved in finding the mechanism or rate of transitions is the location of the relevant saddle points on the multidimensional potential energy surface. The saddle point search is particularly challenging when the final state of the transition is not specified. In this article we report on a comparison of several methods for locating saddle points under these conditions and compare, in particular, the well-established rational function optimization (RFO) methods using either exact or approximate Hessians with the more recently proposed minimum mode following methods where only the minimum eigenvalue mode is found, either by the dimer or the Lanczos method. A test problem involving transitions in a seven-atom Pt island on a Pt(111) surface using a simple Morse pairwise potential function is used and the number of degrees of freedom varied by varying the number of movable atoms. In the full system, 175 atoms can move so 525 degrees of freedom need to be optimized to find the saddle points. For testing purposes, we have also restricted the number of movable atoms to 7 and 1. Our results indicate that if attempting to make a map of all relevant saddle points for a large system (as would be necessary when simulating the long time scale evolution of a thermal system) the minimum mode following methods are preferred. The minimum mode following methods are also more efficient when searching for the lowest saddle points in a large system, and if the force can be obtained cheaply. However, if only the lowest saddle points are sought and the calculation of the force is expensive but a good approximation for the Hessian at the starting position of the search can be obtained at low cost, then the RFO approaches employing an approximate Hessian represent the preferred choice. For small and medium sized systems where the force is expensive to calculate, the RFO approaches employing an approximate Hessian is also the more efficient, but when the force and Hessian can be obtained cheaply and only the lowest saddle points are sought the RFO approach using an exact Hessian is the better choice. These conclusions have been reached based on a comparison of the total computational effort needed to find the saddle points and the number of saddle points found for each of the methods. The RFO methods do not perform very well with respect to the latter aspect, but starting the searches further away from the initial minimum or using the hybrid RFO version presented here improves this behavior considerably in most cases.
Thermal rate constants are calculated for the H + CH 4 f CH 3 + H 2 reaction employing the potential energy surface of Espinosa-García (Espinosa-García, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.; Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-García surface results in larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common temperature range. Comparison is also made with various tunneling corrections to transition state theory and quantum instanton theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.