Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of "pathway swapping," using yeast glycolysis as the experimental model. Construction of a "single-locus glycolysis" Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast's entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes.pathway swapping | glycolysis | Saccharomyces cerevisiae | modular genomes R eplacement of petrochemistry by bio-based processes is a key element for sustainable development and requires microbes equipped with novel-to-nature capabilities. Recent developments in synthetic biology enable introduction of entire metabolic pathways and, thereby, new functionalities for product formation and substrate consumption, into microbial cells (1). However, industrial relevance of the resulting strains critically depends on optimal interaction of the newly introduced pathways with the core metabolism of the host cell. Central metabolic pathways such as glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, are essential for synthesis of precursors, for providing free energy (ATP), and for redox-cofactor balancing. Optimization of productivity, product yield, and robustness therefore requires modifications in the configuration and/or regulation of these core metabolic functions.Engineering of central metabolism is in some respects more challenging than the functional expression of heterologous product pathways. Millions of years of evolution of microorganisms have endowed their metabolic and regulatory networks with a level of complexity that cannot be efficiently reengineered by iterative, single-gene modifications. Enzymes of central metabolism are encoded by hundreds of genes that, especially in eukaryotes, are scattered across microbial genomes. Moreover, inactivation and subsequent replacement of genes involved in central metabolism is complicated by functional redundancy of isoenzymes (2, 3) as well as by the essential role of many of the corresponding biochemical reactions. Microbial platforms in which the configuration of key pathways can be remodelled in a swift, combinatorial manner would provide an invaluable asset for fundamental research and engineering of central metabolism.Wherea...