Over the last several years, the field of Structured prediction in NLP has had seen huge advancements with sophisticated probabilistic graphical models, energy-based networks, and its combination with deep learning-based approaches. This survey provides a brief of major techniques in structured prediction and its applications in the NLP domains like parsing, sequence labeling, text generation, and sequence to sequence tasks. We also deep-dived into energy-based and attention-based techniques in structured prediction, identified some relevant open issues and gaps in the current state-of-the-art research, and have come up with some detailed ideas for future research in these fields.