A new technological approach to the synthesis of multilayer nanostructures which allows their use in high-performance storage of electrical energy at the nanoscale level is discussed in this paper. In particular, the effect of co-intercalation of histidine (his), water and a solution of KOH into layered semiconductors of GaSe and InSe on the charge accumulation are studied. Based on the data of the cyclic current-voltage characteristics (CVC) a power storage mechanism (capacitive/pseudocapacitive) in each of these structures is described. This mechanism is in a good accord with the results of galvanostatic studies. The simulation of the parameters of the impedance equivalent circuit has been carried out, proving the possibility of using the described structures for nanoelectronics and nanoenergy devices. The observed values of tangent of electrical losses tgδ (<1) in coherence with a high dielectric constant are promising for the creation of quantum batteries and capacitors.