2020 International Conference on Smart Electronics and Communication (ICOSEC) 2020
DOI: 10.1109/icosec49089.2020.9215441
|View full text |Cite
|
Sign up to set email alerts
|

Student Attendance System using Face Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 60 publications
(10 citation statements)
references
References 3 publications
0
9
0
1
Order By: Relevance
“…: Sistem Absensi Berbasis Pengenalan Wajah DOI: 10.34148/teknika.v11i1.424 contohnya masker, karena apabila wajah tertutup oleh masker program tidak dapat mendeteksi hidung dan mulut sehingga wajah tidak terdeteksi. Orientasi wajah juga tidak boleh terputar, seperti orientasi wajah terputar atau miring, karena program diatur untuk dapat mendeteksi wajah pada orientasi lurus [12].…”
Section: B Deteksi Wajahunclassified
“…: Sistem Absensi Berbasis Pengenalan Wajah DOI: 10.34148/teknika.v11i1.424 contohnya masker, karena apabila wajah tertutup oleh masker program tidak dapat mendeteksi hidung dan mulut sehingga wajah tidak terdeteksi. Orientasi wajah juga tidak boleh terputar, seperti orientasi wajah terputar atau miring, karena program diatur untuk dapat mendeteksi wajah pada orientasi lurus [12].…”
Section: B Deteksi Wajahunclassified
“…Samridhi Dev et al [12] states that the improvement of their system is meant to achieve digitization of the conventional system for taking attendence by calling names and keeping up with pen and paper records. The proposed framework utilizes Haar classifiers, Gabor filters, Generative adversarial networks, SVM (Support Vector Machine), CNN and KNN (k-nearest neighbors).…”
Section: Literature Surveymentioning
confidence: 99%
“…There may be a possibility of getting the image blurred as all the students will be moving. So an enhanced image will be passed to the system for face detection [5,6]. The system will now first detect the faces in the image , then it will extract the facial features, and at the end it will recognize the students names using those features.…”
Section: Introductionmentioning
confidence: 99%