Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Feedback regulation of bile acid synthesis by its end products was studied in cultured hepatocytes of young weaned pigs. We previously showed that conversion of exogenous [14C] cholesterol into bile acids was suppressed by addition of bile acids to the culture medium. In the present study, the effects of bile acids on bile acid mass production and cholesterol 7 alpha-hydroxylase activity were examined. Mass production of bile acids was strongly inhibited by addition of taurocholic acid (50 and 100 mumol/L) to the culture medium. The inhibitory action was exerted specifically on activity of cholesterol 7 alpha-hydroxylase because conversion of [14C] 7 alpha-hydroxycholesterol to bile acids by pig hepatocytes was not affected. Suppression of cholesterol 7 alpha-hydroxylase activity after incubation of the hepatocytes with taurocholic acid was concentration- and time-dependent. Maximum suppression (-80%) was achieved after a 20 to 30 hr incubation of hepatocytes with 100 mumol/L of this bile acid. Decline of enzyme activity caused by 100 mumol/L taurocholic acid followed first-order kinetics with a half-life of 10 hr. Taurocholic acid had no direct effect on cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes as assessed by addition of the bile acid to the assay mixture. The effects of several other bile acids in a concentration of 100 mumol/L on cholesterol 7 alpha-hydroxylase activity were examined in 48 hr incubations. Glycochenodeoxycholic and glycohyodeoxycholic acids, which are the major bile acids in pig bile, their unconjugated forms and also deoxycholic and cholic acid pronouncedly inhibited activity of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Feedback regulation of bile acid synthesis by its end products was studied in cultured hepatocytes of young weaned pigs. We previously showed that conversion of exogenous [14C] cholesterol into bile acids was suppressed by addition of bile acids to the culture medium. In the present study, the effects of bile acids on bile acid mass production and cholesterol 7 alpha-hydroxylase activity were examined. Mass production of bile acids was strongly inhibited by addition of taurocholic acid (50 and 100 mumol/L) to the culture medium. The inhibitory action was exerted specifically on activity of cholesterol 7 alpha-hydroxylase because conversion of [14C] 7 alpha-hydroxycholesterol to bile acids by pig hepatocytes was not affected. Suppression of cholesterol 7 alpha-hydroxylase activity after incubation of the hepatocytes with taurocholic acid was concentration- and time-dependent. Maximum suppression (-80%) was achieved after a 20 to 30 hr incubation of hepatocytes with 100 mumol/L of this bile acid. Decline of enzyme activity caused by 100 mumol/L taurocholic acid followed first-order kinetics with a half-life of 10 hr. Taurocholic acid had no direct effect on cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes as assessed by addition of the bile acid to the assay mixture. The effects of several other bile acids in a concentration of 100 mumol/L on cholesterol 7 alpha-hydroxylase activity were examined in 48 hr incubations. Glycochenodeoxycholic and glycohyodeoxycholic acids, which are the major bile acids in pig bile, their unconjugated forms and also deoxycholic and cholic acid pronouncedly inhibited activity of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
In the current study, the role of the supply of preformed and newly synthesized cholesterol for the feedback control of the synthesis of different bile acids and the secretion of biliary cholesterol was investigated. To define these cholesterol fluxes and the possibility of a different modulation by bile acids with different suppressive capacities, a continuous labeling with tritiated water was used in rats with an extracorporeal bile duct receiving intraduodenal infusions of taurocholate or taurocholate plus deoxycholate. After bile acid pool depletion (6 to 9 hours) total muricholate, cholate, and chenodeoxycholate synthesis was variably increased (24% to 93%) during an infusion of 304 mumol taurocholate/kg per hour. The increase in bile acid synthesis and biliary cholesterol output was predominantly due to the utilization of preformed (unlabeled) cholesterol. The addition of 52 mumol/kg per hour of deoxycholate to 258 mumol/kg per hour of taurocholate had a comparable effect. In the late period (30 to 54 hours), the taurocholate infusion had little impact on total muricholate and chenodeoxycholate synthesis but caused by a significant increase of the proportion from performed cholesterol. Both total cholate production and its synthesis from de novo (labeled) cholesterol was inhibited by 30% (P < .05) and 64% (P < .01), respectively. The secretion rate of total and de novo biliary cholesterol was higher (65% and 72%; P < .01) compared with controls. In comparison, the combined bile acid infusion led to a further increase of total muricholate synthesis (P < .05), which was again due to an enhanced synthesis from performed cholesterol (P < .001). Similar changes were observed in chenodeoxycholate. The more pronounced suppression of total cholate synthesis by 81% (P < .05) was due to a diminished cholate synthesis from both de novo cholesterol by 72% (P < .001) and preformed cholesterol by 91% (P > .05). We conclude that the modulation of the synthesis of the various primary bile acids in the rat differs and feedback regulation of cholate synthesis by taurocholate and deoxycholate is mediated by different mechanisms of control, including inhibition of cholesterol 7 alpha-hydroxylase, HMG-CoA reductase, and uptake of lipoprotein cholesterol.
Hepatic bile acid synthesis is regulated by recirculating bile acids, possibly by modulating the availability of newly synthesized and preformed cholesterol. Because data in the hamster on this mechanism are lacking, we fitted these animals with an extracorporeal bile duct and administered tritiated water intraperitoneally to label newly formed cholesterol. After interruption of the enterohepatic circulation, physiological and double-physiological doses of conjugated cholate (25 or 50 mol/100 g · h) or of unconjugated deoxycholate (6 or 12 mol) were infused intraduodenally for 54 hours and compared with controls. De novo and preformed cholesterol directly secreted into bile or used for cholate and chenodeoxycholate synthesis were quantitated by high-pressure liquid chromatography (HPLC)-liquid scintillation. Directly after depletion of the bile acid pool (6-9 hours) at nearly physiological conditions, chenodeoxycholate synthesis was significantly reduced by cholate and deoxycholate by up to 45% to 51%, whereas cholate formation decreased by Ϸ22% during deoxycholate. This short-term effect was mainly mediated by reduced synthesis from preformed cholesterol. After long-term bile depletion (30-54 hours), bile acid synthesis returned to control levels during 25 mol of cholate and of both deoxycholate doses. In contrast, only 50 mol of cholate prevented derepression of bile acid synthesis. This long-term effect was mainly attributed to a diminished formation from de novo cholesterol exceeding the reduced synthesis from preformed cholesterol. In summary, short-and long-term regulation of bile acid synthesis in hamsters differs with respect to availabilities of preformed and de novo cholesterol. (HEPATOL-OGY 1999;30:230-237.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.