Feedback regulation of bile acid synthesis by its end products was studied in cultured hepatocytes of young weaned pigs. We previously showed that conversion of exogenous [14C] cholesterol into bile acids was suppressed by addition of bile acids to the culture medium. In the present study, the effects of bile acids on bile acid mass production and cholesterol 7 alpha-hydroxylase activity were examined. Mass production of bile acids was strongly inhibited by addition of taurocholic acid (50 and 100 mumol/L) to the culture medium. The inhibitory action was exerted specifically on activity of cholesterol 7 alpha-hydroxylase because conversion of [14C] 7 alpha-hydroxycholesterol to bile acids by pig hepatocytes was not affected. Suppression of cholesterol 7 alpha-hydroxylase activity after incubation of the hepatocytes with taurocholic acid was concentration- and time-dependent. Maximum suppression (-80%) was achieved after a 20 to 30 hr incubation of hepatocytes with 100 mumol/L of this bile acid. Decline of enzyme activity caused by 100 mumol/L taurocholic acid followed first-order kinetics with a half-life of 10 hr. Taurocholic acid had no direct effect on cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes as assessed by addition of the bile acid to the assay mixture. The effects of several other bile acids in a concentration of 100 mumol/L on cholesterol 7 alpha-hydroxylase activity were examined in 48 hr incubations. Glycochenodeoxycholic and glycohyodeoxycholic acids, which are the major bile acids in pig bile, their unconjugated forms and also deoxycholic and cholic acid pronouncedly inhibited activity of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.